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Analysis of minimal pinning density for controlling spatiotemporal chaos
of a coupled map lattice

Y. S. Kwon, S. W. Ham, and K. K. Lee
School of Electronics and Electrical Engineering, Kyungpook National University, Taegu, 702-701, Korea

~Received 22 July 1996!

Feedback pinning is a useful method in controlling spatiotemporal chaos of a coupled map lattice~CML!.
We analytically derive the minimal pinning density for controlling spatiotemporal chaos in a general one-
dimensional CML. The results give a general condition for controlling a CML to the desired states. The results
are verified by numerical simulations of the coupled logist map.@S1063-651X~97!08302-5#

PACS number~s!: 05.45.1b
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Chaos is common and has been extensively studied in
last decade. Chaos is a beneficial feature in some cases,
ever, it is an undesirable phenomenon in many situatio
The problem of controlling chaos, that is, to convert the c
otic behavior to a periodic one, has attracted much inte
@1–4#. However, the majority of these studies are concer
with the control of temporal chaos in finite- and low
dimensional systems. There are many practical syst
where both spatial and temporal chaos exist. Controll
such spatiotemporal chaos is also important. But the stud
controlling spatiotemporal chaos, in spite of its importan
is still in an early stage.

The high dimensionality of the spatially extended syste
causes many difficulties both in analytical and numeri
studies. The relatively simple coupled map lattice~CML!
model is often taken as a convenient tool to study the ch
acteristics of spatiotemporal systems@5#. The CML has been
used to model various phenomena in hydrodynamics, op
and solid-state physics@6,7#. Furthermore, some physical ex
periments have been carried out@8#.

Some methods of controlling spatiotemporal chaos w
suggested@9–11#. Among these studies, Gang and Zhil
suggested a method in which they put some local cont
~pinnings! in space@9#. Doing so, they could control the tota
systems by modulating very few freedoms. Gang and Zh
verified the minimal pinning density for controlling spa
tiotemporal chaos through numerical analysis of the coup
logist map. The result is only a numerical analysis and c
not be applied to other systems.

In this paper we approximate a CML with pinnings to
linear system, and analytically derive the minimal pinni
density for controlling a CML to the desired state for a ge
eral one-dimensional CML. The results give a general c
dition for controlling a CML to the desired states.
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Let us consider a well known one-dimensional CM
model @5#.

xn11~ i !5~12e! f @xn~ i !#1 1
2 e$ f @xn~ i21!#1 f @xn~ i11!#%,

~1!

wherei51,2, . . . ,L are the lattice sites andL is the system
size. f @ # is a one-dimensional chaotic map. The parame
e is coupling strength and constrained to 0,e,1. In the
case ofe50, the map lattice is called an uncoupled m
lattice, and all sites in the lattice then become independen
one another. The periodic boundary conditio
xn( i1L)5xn( i ), is assumed. To control this system, a co
trol term ~pinning! is added on the right hand side of Eq.~1!.

xn11~ i !5~12e! f @xn~ i !#1 1
2 e$ f @xn~ i21!#1 f @xn~ i11!#%

1 (
k50

L/I

d~ i2Ik21!un~ i !, ~2!

where I is the distance between two neighboring pinnin
and 1/I is called the pinning density. That is, pinning
un( i ), is applied to the (Ik11)th site. We analyze the CML
with pinnings through linear analysis, which gives the ne
essary condition for stabilizing the CML to the desired sta
x̄n( i ).
First, we consider the case where the desired statex̄n( i ) is

a fixed point, i.e.,x̄n( i )5 x̄ and x̄5 f ( x̄). It is assumed that
the controlled sites converge to the desired statex̄. That is,
after transient time, the controlled sites can be approxima
to xn(Ik11)> x̄, k50,1,2, . . . ,L/I21. We expand the Tay-
lor series off @ # at x̄ and ignore the higher order terms. The
the CML with pinnings is approximated to (I21)-
dimensional linear systems.
En11~k!>AEn~k!, k50,1,2,. . . ,L/I21

A53
~12e!Df 1

2 eDf 0 0 0 ••• 0

1
2 eDf ~12e!Df 1

2 eDf 0 0 ••• 0

0 1
2 eDf ~12e!Df 1

2 eDf 0 ••• 0

A A

0 0 ••• 0 1
2 eDf ~12e!Df 1

2 eDf

0 0 0 ••• 0 1
2 eDf ~12e!Df

4 , ~3!
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where En(k)5@en(Ik12) en(Ik13) ••• en(Ik1I )#T,
en( i )5xn( i )2 x̄n( i ), andDf is the Jacobian off at x̄. Let an
eigenvalue ofA be l j , j51,2, . . . ,I21. Thenl j must be
s-

s

an
ul j u,1 to control all sites to x̄. We rewrite A as
A5Df „I2e(I1A8)…, where I is an (I21)-dimensional
identity matrix and
A853
0 21/2 0 0 0 ••• 0

21/2 0 21/2 0 0 ••• 0

0 21/2 0 21/2 0 ••• 0

A A

0 0 ••• 0 21/2 0 21/2

0 0 0 ••• 0 21/2 0

4 .
he
de-

r

s a

e

Then, l j can be rewritten asl j5Df „12e(11l j8)…,
where l j8 is an eigenvalue of A8 and
l j85cos(jp/I), j51,2, . . . ,I21 @12#. The condition
uDf „12e(11l j8)…u,1 must be satisfied to control the sy
tem.

To obtain the relationship amongI , e, andDf , we solve
the above inequality. The results are~i! if uDf u,1, then the
system is always stable, and~ii ! if uDf u.1, then the system
is stable if

uDf u,1/cos~p/I !, ~4!

e.@12 ~1/uDf u!#
1

12cos~p/I !
. ~5!

Since cos(p/I) increases to 1 asI increases, more pinning
are necessary asuDf u increases. From Eq.~5! we know that
the largeruDf u is or the largerI is, the largere is needed. In
Fig. 1, we plot I m in the uDf u-e plane, where 1/I m is the
minimal pinning density. From the figure, it is clear that t
minimal pinning density can be considerably reduced by
creasinguDf u and increasinge. WhenuDf u approaches 1, the
minimal pinning density 1/I m approaches zero. In othe
words, if the local systemf @ # is stable, then the total system
is stable for arbitrarye andI . In @9#, Gang and Zhilin showed
the numerical result ofI m for the coupled logist map, which
is much the same as Fig. 1.

Now, we consider the case where the desired orbit i
time period 2 orbit, i.e.,x̄15 f ( x̄2), x̄25 f ( x̄1), and x̄1
Þ x̄2 . Using a similar method, we obtain th
(I21)-dimensional linear equation,

En11~k!5Df 1Df 2A9En~k!, ~6!

where
A953
~12e!21

1
4 e2 e~12e! 1

4e2 0 0 0 0 ••• 0

e~12e! ~12e!21
1
2 e2 e~12e! 1

4 e2 0 0 0 ••• 0

1
4 e2 e~12e! ~12e!21

1
2e2 e~12e! 1

4e2 0 0 ••• 0

0 1
4 e2 e~12e! ~12e!21

1
2e2 e~12e! 1

4 e2 0 ••• 0

A A

0 0 0 ••• 0 1
4 e2 e~12e! ~12e!21

1
2 e2 e~12e!

0 0 0 0 ••• 0 1
4 e2 e~12e! ~12e!21

1
4 e2

4

th
l

andDf 1 andDf 2 are the Jacobians off at x̄1 andx̄2, respec-
tively. In order to stabilize Eq.~6!, the maximum absolute
value of eigenvalues of the above system must be less th
i.e., maxu Df 1Df 2l j9u,1 wherel j9 is an eigenvalue ofA9.
1,

In Fig. 2, we plot maxu l j9u versuse andI . as shown in Fig.
2, ase decreases to 0 orI increases, maxu l j9u converges to
1. Similarly to the case of a fixed point, coupling streng
e and pinning density 1/I must be large to stabilize the tota
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system. In Fig. 3,I m is shown in theuDf 1Df 2u-e plane. The
results are very similar to those of Fig. 1.

Next we consider the case where the desired orbit
spatial period 2 orbit,

FIG. 1. The controllable regions of the fixed point. The line numb
indicate the minimal pinningI m . Above each line the desired statex̄ can be
stabilized by the indicated pinnings.
e
te
a

x̄n~2 j21!5 x̄~1!, x̄n~2 j !5 x̄~2!, j51,2, . . . ,L/2.

Using a similar method, we obtain the followin
(I -1)-dimensional linear equation:

FIG. 3. The controllable regions of the time period 2 orbit. The li
numbers indicate the minimal pinningI m . Above each line the desired
states can be stabilized by the indicated pinnings.
En11~k!53
~12e!Df 1

1
2 eDf 2 0 0 0 ••• 0

1
2 eDf 1 ~12e!Df 2

1
2 eDf 1 0 0 ••• 0

0 1
2 eDf 2 ~12e!Df 1

1
2 eDf 2 0 ••• 0

A A

0 0 0 ••• 0 1
2 eDf 2 ~12e!Df 1

4 En~k!. ~7!
ed

ine
d

Equation ~7! is obtained when the (Ik11)th site is con-
trolled to x̄(2). If the (Ik11)th site is controlled tox̄(1),
then Df 1 and Df 2 are interchanged with each other. Th
maximum absolute value of eigenvalues of the error sys

FIG. 2. The maximum absolute value of eigenvalues ofA9 for various
e and I .
m

~7! must be less than 1 to control the CML to the desir
states. It is difficult to obtainI m for the spatial period 2 orbit
of the general CML.I m for the spatial period 2 orbit of the
coupled logist map is shown in Fig. 4.

FIG. 4. The controllable regions of the spatial period 2 orbit. The l
numbers indicate the minimal pinningI m . Between the same numbere
lines the desired orbit can be stabilized by the indicated pinnings.
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FIG. 5. ~a! Space-time diagram of the CML controlled to the fixed po
with a53.3,e50.8, I54, L560, andpn53. x̄50.696 969 . . . .~b! Space-
time diagram of the CML controlled to the time period 2 orbit wi
a53.5, e50.4, I54, L560, p2m2153, and p2m521, m51,2, . . . .
x̄150.857 142 . . . , andx̄250.428 571 . . . . ~c! Space-time diagram of the
CML controlled to the spatial period 2 orbit witha53.6, e50.84, I54,
L560, and pn52.5. x̄(1)50.816 756 . . . and x̄(2)
50.591 740 . . . .
To verify our analysis, we have applied the results to
coupled logist map. In the logist map, the first perio
doubling bifurcation occurs ata53 and it continues till
a5ac53.569 945 6 . . . .Chaos can be found in the regim
ac,a<4 @13#. In the simulation we setL560 andI54. e
anda are chosen to be close to the boundary value of st
lization. First we want to control the system to a fixed poi
x̄51-1/a. We use feedback controlun( i ) as Gang and Zhi-
lin did @9#.

un~ i !5~12e!pnxn~ i !@xn~ i !2 x̄n~ i !#

1 1
2 e$pnxn~ i21!@xn~ i21!2 x̄n~ i21!#

1pnxn~ i11!@xn~ i11!2 x̄n~ i11!#% ~8!

The initial conditions are randomly chosen from 0 to 1 wh
the desired orbit is a fixed point or a spatial period 2 orb
When the desired orbit is a time period 2 orbit, the init
condition is randomly chosen fromx̄120.1 to x̄110.1 be-
cause the attracting basins of the time period 2 orbit
small. In Fig. 5~a! the space-time diagram is plotted wit
e50.8, a53.3, andpn53. As shown in Fig. 5~a!, all sites
converge tox̄. For the case of time period 2 orbit, the desir
states arex̄15@a111A(a23)(a11)#/2a and x̄25@a11
2A(a23)(a11)#/2a. The simulation is performed with
e50.4 anda53.5. The control parameterpn is chosen as
p2m2153 andp2m521, wherem50,1,2, . . . . Thespace-
time diagram is shown in Fig. 5~b!. Similarly to the case of
fixed point, all sites converge to the desired orbit after tra
sient time. For the case of spatial period 2 orbit, the des
states arex̄(1)5(B1AB224C)/2a(2e21) and x̄(2)5(B
2AB224C)/2a(2e21), whereB512a12ae and C5e
2ae12ae2. In Fig. 5~c! the space-time diagram is plotte
with e50.84,a53.6, andpn52.5. Similarly to other cases
after transient time all sites are stabilized to the desi
states.

In conclusion, we analyzed the minimal pinning dens
of the general one-dimensional CML and verified the resu
through numerical simulations of the coupled logist ma
From the results, it is shown that the smaller coupli
strength is or the larger the Jacobian of the local system
the more pinnings are necessary. Too much coupling, h
ever, has an adverse effect for the spatial period 2 orbit.
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