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Analysis of minimal pinning density for controlling spatiotemporal chaos
of a coupled map lattice
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Feedback pinning is a useful method in controlling spatiotemporal chaos of a coupled map(Gittice
We analytically derive the minimal pinning density for controlling spatiotemporal chaos in a general one-
dimensional CML. The results give a general condition for controlling a CML to the desired states. The results
are verified by numerical simulations of the coupled logist ni81063-651X97)08302-5

PACS numbd(s): 05.45+b

Chaos is common and has been extensively studied in the Let us consider a well known one-dimensional CML
last decade. Chaos is a beneficial feature in some cases, homedel[5].
ever, it is an undesirable phenomenon in many situations.
The problem of controlling chaos, that is, to convert the chaXn+1(1)=(1—€)f[X,(i)]1+ 3 e{f[Xn(i — 1) ]+ f[X,(i +1)]},
otic behavior to a periodic one, has attracted much interest 1)

[1-4]. However, the majority of these studies are concerned ] ) ) )
with the control of temporal chaos in finite- and low- Wherei=12,... | are the lattice sites arid is the system

dimensional systems. There are many practical systemdZ€.f[] is a one-dimensional chaotic map. The parameter
where both spatial and temporal chaos exist. Controlling IS coupling strength and constrained te<@<1. In the
such spatiotemporal chaos is also important. But the study diase ofe=0, the map lattice is called an uncoupled map
controlling spatiotemporal chaos, in spite of its importance,'att'C& and all sites in the Iatt|_ce Fhen become mdepend_gnt of
is still in an early stage. one another. The periodic boundary condition,
The high dimensionality of the spatially extended systemgtn(i +L)=Xx(i), is assumed. To control this system, a con-
causes many difficulties both in analytical and numericafrol term(pinning is added on the right hand side of Ed).
studies. The relatively simple coupled map lattic&VIL) _ i . ) )
model is often taken as a convenient tool to study the charXn+1(l)=(1=€)f[xn(i)]+ 7 e{f[xn(i = 1) ]+ f[xy(i + 1)1}

acteristics of spatiotemporal systefa3. The CML has been L/
used to model various phenomena in hydrodynamics, optics, + > S8(i—1k—1)un(i), 2
and solid-state physid$,7]. Furthermore, some physical ex- k=0

periments have been carried ¢6i.

Some methods of controlling spatiotemporal chaos wer&vherel is the distance between two neighboring pinnings
suggested9—-11]. Among these studies, Gang and Zhilin and 1I is called the pinning density. That is, pinning,
suggested a method in which they put some local control8n(i), is applied to the Ik + 1)th site. We analyze the CML
(pinnings in space9]. Doing so, they could control the total With pinnings through linear analysis, which gives the nec-
systems by modulating very few freedoms. Gang and Zhiliressary condition for stabilizing the CML to the desired states
verified the minimal pinning density for controlling spa- Xn(i). o
tiotemporal chaos through numerical analysis of the coupled First, we consider the case where the desired sift¢ is
logist map. The result is only a numerical analysis and cana fixed point, i.e.x,(i)=x andx=f(x). It is assumed that
not be applied to other systems. the controlled sites converge to the desired stat€hat is,

In this paper we approximate a CML with pinnings to a after transient time, the controlled sites can be approximated
linear system, and analytically derive the minimal pinningto x,(Ik+1)=x,k=0,1,2 ... L/l -1. We expand the Tay-
density for controlling a CML to the desired state for a gen-lor series off[ ] atx and ignore the higher order terms. Then
eral one-dimensional CML. The results give a general conthe CML with pinnings is approximated tol{1)-
dition for controlling a CML to the desired states. dimensional linear systems.

En.1(K)=AE,(k), k=0,1,2,...L/1-1

[(1-e)Df  %eDf 0 0 0 0 ]
3eDf  (1-eDf 3 eDf 0 0 0
A 0 1eDf  (1-eDf Ledf O 0
1 1
0 0 0 LeDf (1-eDf  LeDf 3
0 0 0 0 1 eDf (1-e)Df |
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where En(K)=[en(Ik+2) e (1k+3) --- en(Ik+1)]7,
en(i) =x,(i) —x,(i), andDf is the Jacobian of atx. Let an
eigenvalue ofA be\;, j=1,2,...,]—1. Then\; must be

0 -12 0
-12 0 -12
0 -12 0
A=l
0

Then, \j can be rewritten as\;=Df(1—e(1+\))),
where )\j’ is an eigenvalue of A’ and
A{=cos(wll), j=1,2,...)—=1 [12]. The condition
IDf(1—e€(1+\))|<1 must be satisfied to control the sys-
tem.

To obtain the relationship amorig e, andDf, we solve
the above inequality. The results digif |[Df|<1, then the
system is always stable, afid) if |Df|>1, then the system
is stable if

|Df|<1/cog /1), (4)

e>[1—- (1/|Df])] (5)

1
l1-coqw/l)’

Since cosf/l) increases to 1 ak increases, more pinnings
are necessary d®f| increases. From Eq5) we know that

[(1-€)2+3 e e(l-e) €2 0
fl-e) (1-e2+ie  el-e) L
1 e(l—¢) (1— €)%+ 3¢ e(l—¢)
A'= 0 i€ e(l—e)  (1-e?+3
0 0 0
I 0 0 0 0

andDf, andDf, are the Jacobians dfatx; andx,, respec-
tively. In order to stabilize Eq(6), the maximum absolute

BRIEF REPORTS

55
INj|<1 to control all sites tox. We rewrite A as
A=Df(I—€(I+A")), where | is an (—1)-dimensional
identity matrix and

0 0

0 0

—1/2 0
0 -1/2 0 —1/2
0 -1/2 0 |

the largerDf| is or the largel is, the largere is needed. In
Fig. 1, we plotl, in the |Df|-e plane, where 1/, is the
minimal pinning density. From the figure, it is clear that the
minimal pinning density can be considerably reduced by de-
creasindDf| and increasing. When|D f| approaches 1, the
minimal pinning density 1}, approaches zero. In other
words, if the local systerfi[ ] is stable, then the total system
is stable for arbitrarg andl. In[9], Gang and Zhilin showed
the numerical result off,, for the coupled logist map, which
is much the same as Fig. 1.

Now, we consider the case where the desired orbit is a
time period 2 orbit, i.e.,x;=f(xy), X,=f(x;), and x;

#X,. Using a similar method, we obtain the
(I —1)-dimensional linear equation,
En+1(k)=DfiDf,A"Eq(K), (6)
where
0 0 0 0 ]
0 0 0 0
e 0 0 0
e(l—¢) 1e 0 0
0 1 el-e) (1-e?+32  e(l—e
0 ;& e(l-e)  (1-e?+5é]

In Fig. 2, we plot mak\{| versuse andl. as shown in Fig.
2, ase decreases to 0 drincreases, max\j| converges to

value of eigenvalues of the above system must be less than 1, Similarly to the case of a fixed point, coupling strength

i.e., mat Df;Df,\{|<1 where)] is an eigenvalue oA”.

€ and pinning density 1/must be large to stabilize the total



55 BRIEF REPORS. .. 2011

0.8r
0.7}
0.6r
w 0.5 1=2
041
0.3r
0.2

0.1

25 3

. . 5 2
1 1.2 14 1.6 1.8 2 1D, Df2
IDfl

FIG. 3. The controllable regions of the time period 2 orbit. The line
numbers indicate the minimal pinninig,. Above each line the desired
states can be stabilized by the indicated pinnings.

FIG. 1. The controllable regions of the fixed point. The line numbers
indicate the minimal pinning,, . Above each line the desired statean be
stabilized by the indicated pinnings.

system. In Fig. 3|, is shown in thgDf,Df,|-€ plane. The (2] =D =x(1), xn(2)=x(2), j=12,...}L/2.
results are very similar to those of Fig. 1.
Next we consider the case where the desired orbit is &sing a similar method, we obtain the following

spatial period 2 orbit, (I-1)-dimensional linear equation:
|
[(1-eDf,  Llepf, 0 o 0 - o |
%EDfl (1-¢)Df, %eDfl 0 0 0
En+1(k)= 0 $eDf, (1—€)Df; 3eDf, O - 0 En(k). @)
0 0 0 0 1eDf, (1—€Dfy

Equation (7) is obtained when thelk+1)th site is con- (7) must be less than 1 to control the CML to the desired
trolled to x(2). If the (Ik+1)th site is controlled tox(1),  states. It is difficult to obtait,, for the spatial period 2 orbit
then Df, and Df, are interchanged with each other. The of the general CMLI, for the spatial period 2 orbit of the
maximum absolute value of eigenvalues of the error systergoupled logist map is shown in Fig. 4.
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FIG. 4. The controllable regions of the spatial period 2 orbit. The line
FIG. 2. The maximum absolute value of eigenvaluef\bffor various numbers indicate the minimal pinninlg,. Between the same numbered

e andl. lines the desired orbit can be stabilized by the indicated pinnings.
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FIG. 5. (a) Space-time diagram of the CML controlled to the fixed point
with a=3.3,e=0.8,| =4,L=60, andp,=3.x=0.696 96 . . . .(b) Space-
time diagram of the CML controlled to the time period 2 orbit with
a=3.5, €=04, |=4, L=60, p,,_1=3, and p,,=—1, m=12,....
%x;=0.857 12 ..., andx,=0.428 57 . .. .(c) Space-time diagram of the
CML controlled to the spatial period 2 orbit with=3.6, e=0.84,1=4,
L=60, and p,=25  x(1)=08167%... and  x(2)
=059170... .

BRIEF REPORTS

55
To verify our analysis, we have applied the results to the
coupled logist map. In the logist map, the first period-
doubling bifurcation occurs aa=3 and it continues till
a=a.=3.56994 6. ...Chaos can be found in the regime
a.<a<4 [13]. In the simulation we set =60 andl =4. e
anda are chosen to be close to the boundary value of stabi-
lization. First we want to control the system to a fixed point,
x=1-1/a. We use feedback contral,(i) as Gang and Zhi-
lin did [9].

Un(1) = (1= €) PpXn(1)[Xn(1) = Xq(i)]
+3 €{PaXn(i = D)[Xn(i = 1) =Xp(i = 1)]

+pnxn(i+1)[Xn(i+1)_xn(i+l)]} (8)

The initial conditions are randomly chosen from 0 to 1 when
the desired orbit is a fixed point or a spatial period 2 orbit.
When the desired orbit is a time period 2 orbit, the initial
condition is randomly chosen from;—0.1 to x;+0.1 be-
cause the attracting basins of the time period 2 orbit are
small. In Fig. %a) the space-time diagram is plotted with
€=0.8,a=3.3, andp,=3. As shown in Fig. ta), all sites
converge tox. For the case of time period 2 orbit, the desired
states arex;=[a+1+ (a—3)(a+1)]/2a and x,=[a+1
—y(a—3)(a+1)]/2a. The simulation is performed with
€=0.4 anda=3.5. The control parametqy, is chosen as
Pom-1=3 andp,,=—1, wherem=0,1,2 . ... Thespace-
time diagram is shown in Fig. (B). Similarly to the case of
fixed point, all sites converge to the desired orbit after tran-
sient time. For the case of spatial period 2 orbit, the desired
states arex(1)=(B+ yB?—4C)/2a(2¢—1) andx(2)=(B
—BZ-4C)/2a(2e—1), whereB=1—a+2ae and C=¢
—ae+2ae?. In Fig. 5c) the space-time diagram is plotted
with €e=0.84,a= 3.6, andp,=2.5. Similarly to other cases,
after transient time all sites are stabilized to the desired
states.

In conclusion, we analyzed the minimal pinning density
of the general one-dimensional CML and verified the results
through numerical simulations of the coupled logist map.
From the results, it is shown that the smaller coupling
strength is or the larger the Jacobian of the local system is,
the more pinnings are necessary. Too much coupling, how-
ever, has an adverse effect for the spatial period 2 orbit.
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